Abstract View

Author(s): Sirajunisa Talath a, Afreen Begum Hasansab Itagi b, Naziya Hamid c

Email(s): sirajunisa@rakmhsu.ac.ae

Address:

    a Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates (UAE)
    b All India Institute of Medical Sciences, Mangalagiri- 522503 (A.P.)
    c Department of Emergency Medicine, K D Medical College, Hospital and Research Center, Mathura, Uttar Pradesh, 281406

Published In:   Volume - 1,      Issue - 2,     Year - 2024

DOI: 10.5281/zenodo.14634105  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Many thrombotic events have been related to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), complicating clinical management of COVID-19 patients. This article details the biology, diagnosis, and therapy of the complex SARS-CoV-2-thrombotic illness relationship. This article begins by investigating how SARS-CoV-2 produces hypercoagulability. It explains how viral spike proteins produce endothelial dysfunction, coagulation cascade, and microvascular and macrovascular thrombi. Virus-induced systemic inflammation increases thrombotic risks by dysregulating the immune system and secreting cytokines. This article delves into the epidemiology of COVID-19 thrombotic events, examining data from clinical trials and observational research that explains rates of occurrence, risk factors, and outcomes. This finding highlights the fact that thrombotic problems can manifest differently in various patient groups, such as those with preexisting conditions, those in need of critical care, and those experiencing the long-term effects of SARS-CoV-2 infection. Thrombotic event management with concurrent COVID-19 therapies, including antiviral medications and immunomodulatory medicines, is also covered in the article. It discusses the interplay between these treatments and anticoagulation therapy, providing insights into optimizing management strategies to minimize both thrombotic and bleeding complications. Finally, the article emphasizes the need for ongoing research to further elucidate the mechanisms of SARS-CoV-2-induced thrombosis and to refine therapeutic strategies. It advocates for a multidisciplinary approach to managing thrombotic events, incorporating insights from infectious disease specialists, hematologists, and intensivists to improve patient outcomes.

Cite this article:
Talath S, Itagi AB, Hamid N. Management and Treatment of SARS-CoV-induced thrombotic events. Prob. Sci., 2024;1(2): 20–39.DOI: https://doi.org/10.5281/zenodo.14634105


1.      Mohanty SK, Satapathy A, Naidu MM, Mukhopadhyay S, Sharma S, Barton LM, Stroberg E, Duval EJ, Pradhan D, Tzankov A, Parwani AV. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) - anatomic pathology perspective on current knowledge. Diagn Pathol. 2020 Aug 14;15(1):103. doi: 10.1186/s13000-020-01017-8. 

2.      Elezkurtaj S, Greuel S, Ihlow J, Michaelis EG, Bischoff P, Kunze CA, Sinn BV, Gerhold M, Hauptmann K, Ingold-Heppner B, Miller F, Herbst H, Corman VM, Martin H, Radbruch H, Heppner FL, Horst D. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci Rep. 2021 Feb 19;11(1):4263. doi: 10.1038/s41598-021-82862-5. 

3.      Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I, Schröder AS, Burdelski C, de Heer G, Nierhaus A, Frings D, Pfefferle S, Becker H, Bredereke-Wiedling H, de Weerth A, Paschen HR, Sheikhzadeh-Eggers S, Stang A, Schmiedel S, Bokemeyer C, Addo MM, Aepfelbacher M, Püschel K, Kluge S. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med. 2020 Aug 18;173(4):268-277. doi: 10.7326/M20-2003.

4.      Chauhan S. Comprehensive review of coronavirus disease 2019 (COVID-19). Biomed J. 2020 Aug;43(4):334-340. doi: 10.1016/j.bj.2020.05.023.

5.      Al-Rohaimi AH, Al Otaibi F. Novel SARS-CoV-2 outbreak and COVID19 disease; a systemic review on the global pandemic. Genes Dis. 2020 Jun 17;7(4):491-501. doi: 10.1016/j.gendis.2020.06.004. 

6.      Wu, W., Cheng, Y., Zhou, H. et al. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 20, 6 (2023). https://doi.org/10.1186/s12985-023-01968-6

7.      Robinson EL, Alkass K, Bergmann O, Maguire JJ, Roderick HL, Davenport AP. Genes encoding ACE2, TMPRSS2 and related proteins mediating SARS-CoV-2 viral entry are upregulated with age in human cardiomyocytes. J Mol Cell Cardiol. 2020 Oct;147:88-91. doi: 10.1016/j.yjmcc.2020.08.009.

8.      Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020 Mar 19;91(1):157-160. doi: 10.23750/abm.v91i1.9397. 

9.      Carfora V, Spiniello G, Ricciolino R, Di Mauro M, Migliaccio MG, Mottola FF, Verde N, Coppola N; Vanvitelli COVID-19 group. Anticoagulant treatment in COVID-19: a narrative review. J Thromb Thrombolysis. 2021 Apr;51(3):642-648. doi: 10.1007/s11239-020-02242-0.

10.   Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 2020 Apr;63(4):119-124. doi: 10.3345/cep.2020.00493. 

11.   Farkaš B, Minneci M, Misevicius M, Rozas I. A Tale of Two Proteases: MPro and TMPRSS2 as Targets for COVID-19 Therapies. Pharmaceuticals (Basel). 2023 Jun 2;16(6):834. doi: 10.3390/ph16060834. 

12.   Moschonas IC, Tselepis AD. SARS-CoV-2 infection and thrombotic complications: a narrative review. J Thromb Thrombolysis. 2021 Jul;52(1):111-123. doi: 10.1007/s11239-020-02374-3.

13.   Garmo C, Bajwa T, Burns B. Physiology, Clotting Mechanism. [Updated 2023 Sep 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507795/

14.   Barmore W, Bajwa T, Burns B. Biochemistry, Clotting Factors. [Updated 2023 Feb 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507850/

15.   Akhter MS, Hamali HA, Mobarki AA, Rashid H, Oldenburg J, Biswas A. SARS-CoV-2 Infection: Modulator of Pulmonary Embolism Paradigm. J Clin Med. 2021 Mar 4;10(5):1064. doi: 10.3390/jcm10051064.

16.   De Lorenzo A, Escobar S, Tibiriçá E. Systemic endothelial dysfunction: A common pathway for COVID-19, cardiovascular and metabolic diseases. Nutr Metab Cardiovasc Dis. 2020 Jul 24;30(8):1401-1402. doi: 10.1016/j.numecd.2020.05.007. 

17.   Lampelj M, Arko D, Cas-Sikosek N, Kavalar R, Ravnik M, Jezersek-Novakovic B, Dobnik S, Dovnik NF, Takac I. Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) in breast cancer - correlation with traditional prognostic factors. Radiol Oncol. 2015 Nov 27;49(4):357-64. doi: 10.2478/raon-2014-0049. 

18.   Meizoso JP, Moore HB, Moore EE. Fibrinolysis Shutdown in COVID-19: Clinical Manifestations, Molecular Mechanisms, and Therapeutic Implications. J Am Coll Surg. 2021 Jun;232(6):995-1003. doi: 10.1016/j.jamcollsurg.2021.02.019

19.   Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020 Aug;192:152-160. doi: 10.1016/j.thromres.2020.05.039.

20.   Lee KW, Yusof Khan AHK, Ching SM, Chia PK, Loh WC, Abdul Rashid AM, Baharin J, Inche Mat LN, Wan Sulaiman WA, Devaraj NK, Sivaratnam D, Basri H, Hoo FK. Stroke and Novel Coronavirus Infection in Humans: A Systematic Review and Meta-Analysis. Front Neurol. 2020 Oct 6;11:579070. doi: 10.3389/fneur.2020.579070.

21.   Hanson PJ, Liu-Fei F, Ng C, Minato TA, Lai C, Hossain AR, Chan R, Grewal B, Singhera G, Rai H, Hirota J, Anderson DR, Radio SJ, McManus BM. Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort. Lab Invest. 2022 Aug;102(8):814-825. doi: 10.1038/s41374-022-00783-x.

22.   Lee PY, Cron RQ. The Multifaceted Immunology of Cytokine Storm Syndrome. J Immunol. 2023 Apr 15;210(8):1015-1024. doi: 10.4049/jimmunol.2200808.

23.   Danish FI, Rabani AE, Subhani FE, Yasmin S, Koul SS. COVID-19: Vaccine-induced immune thrombotic thrombocytopenia. Eur J Haematol. 2022 Dec;109(6):619-632. doi: 10.1111/ejh.13855.

24.   Ashworth I, Thielemans L, Chevassut T. Thrombocytopenia: the good, the bad and the ugly. Clin Med (Lond). 2022 May;22(3):214-217. doi: 10.7861/clinmed.2022-0146. 

25.   Gabarin N, Arnold DM, Nazy I, Warkentin TE. Treatment of vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol. 2022 Apr;59(2):89-96. doi: 10.1053/j.seminhematol.2022.03.002. Epub 2022 Mar 7. 

26.   Nicholson M, Goubran H, Chan N, Siegal D. No apparent association between mRNA COVID-19 vaccination and venous thromboembolism. Blood Rev. 2022 Nov;56:100970. doi: 10.1016/j.blre.2022.100970.

27.   McGonagle D, De Marco G, Bridgewood C. Mechanisms of Immunothrombosis in Vaccine-Induced Thrombotic Thrombocytopenia (VITT) Compared to Natural SARS-CoV-2 Infection. J Autoimmun. 2021 Jul;121:102662. doi: 10.1016/j.jaut.2021.102662.

28.   Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E, Dimopoulos MA. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022 Jul;28(7):542-554. doi: 10.1016/j.molmed.2022.04.007.

29.   Chen Z, Xu W, Ma W, Shi X, Li S, Hao M, Fang Y, Zhang L. Clinical laboratory evaluation of COVID-19. Clin Chim Acta. 2021 Aug;519:172-182. doi: 10.1016/j.cca.2021.04.022. 

30.   Di Minno A, Ambrosino P, Calcaterra I, Di Minno MND. COVID-19 and Venous Thromboembolism: A Meta-analysis of Literature Studies. Semin Thromb Hemost. 2020 Oct;46(7):763-771. doi: 10.1055/s-0040-1715456. 

31.   Sutanto H, Soegiarto G. Risk of Thrombosis during and after a SARS-CoV-2 Infection: Pathogenesis, Diagnostic Approach, and Management. Hematol Rep. 2023 Apr 3;15(2):225-243. doi: 10.3390/hematolrep15020024.

32.   Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, Bouman CCS, Beenen LFM, Kootte RS, Heijmans J, Smits LP, Bonta PI, van Es N. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020 Aug;18(8):1995-2002. doi: 10.1111/jth.14888.

33.   Barnett N, Leith D, Govind D, Ramnani V, Williamson H, Chung J, Drebes A. Prevalence of pulmonary embolism and deep venous thrombosis during the COVID-19 pandemic in an intensive care unit cohort: a service evaluation. Br J Anaesth. 2022 Nov;129(5):e124-e126. doi: 10.1016/j.bja.2022.07.040. 

34.   Katsoularis I, Fonseca-Rodríguez O, Farrington P, Jerndal H, Lundevaller EH, Sund M, Lindmark K, Fors Connolly AM. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ. 2022 Apr 6;377:e069590. doi: 10.1136/bmj-2021-069590.

35.   Ali MAM, Spinler SA. COVID-19 and thrombosis: From bench to bedside. Trends Cardiovasc Med. 2021 Apr;31(3):143-160. doi: 10.1016/j.tcm.2020.12.004.

36.   Mostaza-Fernández JL, Guerra Laso J, Carriedo Ule D, Ruiz de Morales JM. Hemophagocytic lymphohistiocytosis associated with viral infections: Diagnostic challenges and therapeutic dilemmas. Rev Clin Esp (Barc). 2014 Aug-Sep;214(6):320-7. doi: 10.1016/j.rce.2014.03.009.

37.   Valade S, Joly BS, Veyradier A, Fadlallah J, Zafrani L, Lemiale V, Launois A, Stepanian A, Galicier L, Fieschi C, Mirouse A, Tudesq JJ, Lepretre AC, Azoulay E, Darmon M, Mariotte E. Coagulation disorders in patients with severe hemophagocytic lymphohistiocytosis. PLoS One. 2021 Aug 3;16(8):e0251216. doi: 10.1371/journal.pone.0251216.

38.   Moores LK, Tritschler T, Brosnahan S, Carrier M, Collen JF, Doerschug K, Holley AB, Iaccarino J, Jimenez D, LeGal G, Rali P, Wells P. Thromboprophylaxis in Patients With COVID-19: A Brief Update to the CHEST Guideline and Expert Panel Report. Chest. 2022 Jul;162(1):213-225. doi: 10.1016/j.chest.2022.02.006. 

39.   Yan, Z.; Yang, M.; Lai, C.-L. Long COVID-19 Syndrome: A Comprehensive Review of Its Effect on Various Organ Systems and Recommendation on Rehabilitation Plans. Biomedicines 20219, 966. https://doi.org/10.3390/biomedicines9080966

40.   Nutescu EA, Burnett A, Fanikos J, Spinler S, Wittkowsky A. Pharmacology of anticoagulants used in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016 Jan;41(1):15-31. doi: 10.1007/s11239-015-1314-3. 

41.   Cuker A, Tseng EK, Nieuwlaat R, Angchaisuksiri P, et al. American Society of Hematology living guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19: May 2021 update on the use of intermediate-intensity anticoagulation in critically ill patients. Blood Adv. 2021 Oct 26;5(20):3951-3959. doi: 10.1182/bloodadvances.2021005493.

42.   Borawski J, Gozdzikiewicz J, Dubowski M, Pawlak K, Mysliwiec M. Tissue factor pathway inhibitor release and depletion by sulodexide in humans. Adv Med Sci. 2009;54(1):32-6. doi: 10.2478/v10039-009-0009-4.

43.   Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol. 2011 Oct;72(4):634-46. doi: 10.1111/j.1365-2125.2011.04034.x.

44.   Kim HH, Liao JK. Translational therapeutics of dipyridamole. Arterioscler Thromb Vasc Biol. 2008 Mar;28(3):s39-42. doi: 10.1161/ATVBAHA.107.160226. 

45.   Khimani F, Wolf AJ, Yoon B, Blancke A, Gerhart C, Endsley D, Dougherty A, Ray AK, Yango AF, Flynn SD, Lip GYH, Gonzalez SA, Sathyamoorthy M. Therapeutic considerations for prevention and treatment of thrombotic events in COVID-19. Thromb Update. 2023 Mar;10:100126. doi: 10.1016/j.tru.2022.100126.

46.   Herbert JM, Savi P. P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med. 2003 May;3(2):113-22. doi: 10.1055/s-2003-40669. 

47.   Lam S, Tran T. Vorapaxar: A Protease-Activated Receptor Antagonist for the Prevention of Thrombotic Events. Cardiol Rev. 2015 Sep-Oct;23(5):261-7. doi: 10.1097/CRD.0000000000000075. 

48.   Tomaiuolo M, Brass LF, Stalker TJ. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin. 2017 Jan;6(1):1-12. doi: 10.1016/j.iccl.2016.08.001.

49.   Cardenas JC, Wang YW, Karri JV, Vincent S, Cap AP, Cotton BA, Wade CE. Supplementation with antithrombin III ex vivo optimizes enoxaparin responses in critically injured patients. Thromb Res. 2020 Mar;187:131-138. doi: 10.1016/j.thromres.2020.01.014.

50.   Koster A, Fischer KG, Harder S, Mertzlufft F. The direct thrombin inhibitor argatroban: a review of its use in patients with and without HIT. Biologics. 2007 Jun;1(2):105-12.

51.   Ramacciotti E, Barile Agati L, Calderaro D, Aguiar VCR, Spyropoulos AC, de Oliveira CCC, Lins Dos Santos J, Volpiani GG, Sobreira ML, Joviliano EE, Bohatch Júnior MS, da Fonseca BAL, Ribeiro MS, Dusilek C, Itinose K, Sanches SMV, de Almeida Araujo Ramos K, de Moraes NF, Tierno PFGMM, de Oliveira ALML, Tachibana A, Chate RC, Santos MVB, de Menezes Cavalcante BB, Moreira RCR, Chang C, Tafur A, Fareed J, Lopes RD; MICHELLE investigators. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): an open-label, multicentre, randomised, controlled trial. Lancet. 2022 Jan 1;399(10319):50-59. doi: 10.1016/S0140-6736(21)02392-8. 

52.   Connors JM, Brooks MM, Sciurba FC, Krishnan JA, Bledsoe JR, Kindzelski A, Baucom AL, Kirwan BA, Eng H, Martin D, Zaharris E, Everett B, Castro L, Shapiro NL, Lin JY, Hou PC, Pepine CJ, Handberg E, Haight DO, Wilson JW, Majercik S, Fu Z, Zhong Y, Venugopal V, Beach S, Wisniewski S, Ridker PM; ACTIV-4B Investigators. Effect of Antithrombotic Therapy on Clinical Outcomes in Outpatients With Clinically Stable Symptomatic COVID-19: The ACTIV-4B Randomized Clinical Trial. JAMA. 2021 Nov 2;326(17):1703-1712. doi: 10.1001/jama.2021.17272.

53.   Loftis LL, Meals EA, English BK. Differential effects of pentoxifylline and interleukin-10 on production of tumor necrosis factor and inducible nitric oxide synthase by murine macrophages. J Infect Dis. 1997 Apr;175(4):1008-11. doi: 10.1086/513960. 

54.   Dechamps, M.; De Poortere, J.; Octave, M.; Ginion, A.; Robaux, V.; Pirotton, L.; Bodart, J.; Gruson, D.; Van Dievoet, M.-A.; Douxfils, J.; et al. Dexamethasone Modulates the Cytokine Response but Not COVID-19-Induced Coagulopathy in Critically Ill. Int. J. Mol. Sci. 202324, 7278. https://doi.org/10.3390/ijms24087278

55.   Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323:1239-1242.

56.   Khimani F, Wolf AJ, Yoon B, Blancke A, Gerhart C, Endsley D, Dougherty A, Ray AK, Yango AF, Flynn SD, Lip GYH, Gonzalez SA, Sathyamoorthy M. Therapeutic considerations for prevention and treatment of thrombotic events in COVID-19. Thromb Update. 2023 Mar;10:100126. doi: 10.1016/j.tru.2022.100126.

57.   Lee KCH, Sewa DW, Phua GC. Potential role of statins in COVID-19. Int J Infect Dis. 2020 Jul;96:615-617. doi: 10.1016/j.ijid.2020.05.115.

58.   Lim EHT, van Amstel RBE, de Boer VV, van Vught LA, de Bruin S, Brouwer MC, Vlaar APJ, van de Beek D. Complement activation in COVID-19 and targeted therapeutic options: A scoping review. Blood Rev. 2023 Jan;57:100995. doi: 10.1016/j.blre.2022.100995. 

59.   Trambas, I.A.; Coughlan, M.T.; Tan, S.M. Therapeutic Potential of Targeting Complement C5a Receptors in Diabetic Kidney Disease. Int. J. Mol. Sci. 202324, 8758. https://doi.org/10.3390/ijms24108758

60.   Afzali B, Noris M, Lambrecht BN, Kemper C. The state of complement in COVID-19. Nat Rev Immunol. 2022 Feb;22(2):77-84. doi: 10.1038/s41577-021-00665-1. 

61.   Annamaraju P, Patel P, Baradhi KM. Pentoxifylline. [Updated 2024 Feb 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559096/

62.   Broderick C, Forster R, Abdel-Hadi M, Salhiyyah K. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev. 2020 Oct 16;10(10):CD005262. doi: 10.1002/14651858.CD005262.

63.   Maldonado V, Loza-Mejía MA, Chávez-Alderete J. Repositioning of pentoxifylline as an immunomodulator and regulator of the renin-angiotensin system in the treatment of COVID-19. Med Hypotheses. 2020 Nov;144:109988. doi: 10.1016/j.mehy.2020.109988.

64.   Hendry BM, Stafford N, Arnold AD, Sangwaiya A, Manglam V, Rosen SD, Arnold J. Hypothesis: Pentoxifylline is a potential cytokine modulator therapeutic in COVID-19 patients. Pharmacol Res Perspect. 2020 Aug;8(4):e00631. doi: 10.1002/prp2.631. 

65.   Ciszewicz M, Polubinska A, Antoniewicz A, Suminska-Jasinska K, Breborowicz A. Sulodexide suppresses inflammation in human endothelial cells and prevents glucose cytotoxicity. Transl Res. 2009 Mar;153(3):118-23. doi: 10.1016/j.trsl.2008.12.007. 

66.   Gonzalez-Ochoa A, Hernandez A, Raffetto J. Sulodexide in the Treatment of Early Stages of COVID-19. J Vasc Surg Venous Lymphat Disord. 2021 Mar;9(2):539. doi: 10.1016/j.jvsv.2020.12.012.

67.   Gonzalez-Ochoa AJ, Szolnoky G, Hernandez-Ibarra AG, Fareed J. Treatment with Sulodexide Downregulates Biomarkers for Endothelial Dysfunction in Convalescent COVID-19 Patients. Clin Appl Thromb Hemost. 2025 Jan-Dec;31:10760296241297647. doi: 10.1177/10760296241297647.

68.   De Schryver EL, Algra A, van Gijn J. Dipyridamole for preventing stroke and other vascular events in patients with vascular disease. Cochrane Database Syst Rev. 2003;(1):CD001820. doi: 10.1002/14651858.CD001820. Update in: Cochrane Database Syst Rev. 2006 Apr 19;(2):CD001820. doi: 10.1002/14651858.

69.   Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol. 2011 Oct;72(4):634-46. doi: 10.1111/j.1365-2125.2011.04034.x. 

70.   Wennmalm A. Endothelial nitric oxide and cardiovascular disease. J Intern Med. 1994 Apr;235(4):317-27. doi: 10.1111/j.1365-2796.1994.tb01081.x.

71.   Li Z, Luo W, Fang S, Chen X, Lin T, Zhou S, Zhang L, Yang W, Li Z, Ye J, Wang J, Liu P, Li Z. Prostacyclin facilitates vascular smooth muscle cell phenotypic transformation via activating TP receptors when IP receptors are deficient. Acta Physiol (Oxf). 2021 Feb;231(2):e13555. doi: 10.1111/apha.13555. 

72.   Xu X, Chen Y, Lu X, Zhang W, Fang W, Yuan L, Wang X. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges. Biochem Pharmacol. 2022 Nov;205:115279. doi: 10.1016/j.bcp.2022.115279.

73.   Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev. 2017 Jun;36(2):289-303. doi: 10.1007/s10555-017-9675-z. 

74.   Di Bella S, Luzzati R, Principe L, Zerbato V, Meroni E, Giuffrè M, Crocè LS, Merlo M, Perotto M, Dolso E, Maurel C, Lovecchio A, Dal Bo E, Lagatolla C, Marini B, Ippodrino R, Sanson G. Aspirin and Infection: A Narrative Review. Biomedicines. 2022 Jan 25;10(2):263. doi: 10.3390/biomedicines10020263.

75.   Tung YT, Wei CH, Yen CC, Lee PY, Ware LB, Huang HE, Chen W, Chen CM. Aspirin Attenuates Hyperoxia-Induced Acute Respiratory Distress Syndrome (ARDS) by Suppressing Pulmonary Inflammation via the NF-κB Signaling Pathway. Front Pharmacol. 2022 Jan 17;12:793107. doi: 10.3389/fphar.2021.793107. 

76.   Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014 Oct 23;124(17):2625-34. doi: 10.1182/blood-2014-03-562876. 

77.   Beavers CJ, Naqvi IA. Clopidogrel. [Updated 2023 Jul 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470539/

78.   Morrow DA, Alberts MJ, Mohr JP, Ameriso SF, Bonaca MP, Goto S, Hankey GJ, Murphy SA, Scirica BM, Braunwald E; Thrombin Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events–TIMI 50 Steering Committee and Investigators. Efficacy and safety of vorapaxar in patients with prior ischemic stroke. Stroke. 2013 Mar;44(3):691-8. doi: 10.1161/STROKEAHA.111.000433. 

79.   Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 2009 May;94(5):700-11. doi: 10.3324/haematol.2008.003178. 

80.   van Hinsbergh VW. Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol. 2012 Jan;34(1):93-106. doi: 10.1007/s00281-011-0285-5. 

81.   Mondal S, Quintili AL, Karamchandani K, Bose S. Thromboembolic disease in COVID-19 patients: A brief narrative review. J Intensive Care. 2020 Sep 14;8:70. doi: 10.1186/s40560-020-00483-y.

82.   Kruuse C, Jacobsen TB, Thomsen LL, Hasselbalch SG, Frandsen EK, Dige-Petersen H, Olesen J. Effects of the non-selective phosphodiesterase inhibitor pentoxifylline on regional cerebral blood flow and large arteries in healthy subjects. Eur J Neurol. 2000 Nov;7(6):629-38. doi: 10.1046/j.1468-1331.2000.00116.x. 

83.   Makarem A, Zareef R, Abourjeili J, Nassar JE, Bitar F, Arabi M. Low molecular weight heparin in COVID-19: benefits and concerns. Front Pharmacol. 2023 Apr 27;14:1159363. doi: 10.3389/fphar.2023.1159363. 

84.   Bikdeli B, Talasaz AH, Rashidi F, Sharif-Kashani B, Farrokhpour M, Bakhshandeh H, Sezavar H, Dabbagh A, Beigmohammadi MT, Payandemehr P, Yadollahzadeh M, Riahi T, Khalili H, Jamalkhani S, Rezaeifar P, Abedini A, Lookzadeh S, Shahmirzaei S, Tahamtan O, Matin S, Amin A, Parhizgar SE, Jimenez D, Gupta A, Madhavan MV, Parikh SA, Monreal M, Hadavand N, Hajighasemi A, Maleki M, Sadeghian S, Mohebbi B, Piazza G, Kirtane AJ, Lip GYH, Krumholz HM, Goldhaber SZ, Sadeghipour P. Intermediate versus standard-dose prophylactic anticoagulation and statin therapy versus placebo in critically-ill patients with COVID-19: Rationale and design of the INSPIRATION/INSPIRATION-S studies. Thromb Res. 2020 Dec;196:382-394. doi: 10.1016/j.thromres.2020.09.027. 

85.   Talasaz AH, Sadeghipour P, Kakavand H, Aghakouchakzadeh M, Kordzadeh-Kermani E, Van Tassell BW, Gheymati A, Ariannejad H, Hosseini SH, Jamalkhani S, Sholzberg M, Monreal M, Jimenez D, Piazza G, Parikh SA, Kirtane AJ, Eikelboom JW, Connors JM, Hunt BJ, Konstantinides SV, Cushman M, Weitz JI, Stone GW, Krumholz HM, Lip GYH, Goldhaber SZ, Bikdeli B. Recent Randomized Trials of Antithrombotic Therapy for Patients With COVID-19: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021 Apr 20;77(15):1903-1921. doi: 10.1016/j.jacc.2021.02.035.

86.   Farkouh ME, Stone GW, Lala A, Bagiella E, Moreno PR, Nadkarni GN, Ben-Yehuda O, Granada JF, Dressler O, Tinuoye EO, Granada C, Bustamante J, Peyra C, Godoy LC, Palacios IF, Fuster V. Anticoagulation in Patients With COVID-19: JACC Review Topic of the Week. J Am Coll Cardiol. 2022 Mar 8;79(9):917-928. doi: 10.1016/j.jacc.2021.12.023.

87.   Bais B, Sozio E, De Silvestri D, Volpetti S, Zannier ME, Filì C, Bassi F, Alcaro L, Cotrufo M, Pagotto A, Giacinta A, Patruno V, Da Porto A, Sbrojavacca R, Curcio F, Tascini C, Sechi LA, Colussi G. Effect of heparin treatment on pulmonary embolism and in-hospital death in unvaccinated COVID-19 patients without overt deep vein thrombosis. Thromb J. 2022 Jun 20;20(1):34. doi: 10.1186/s12959-022-00393-z. 

88.   Frise MC, Gates REV, Curry NS, Danbury CM. Successful Use of Argatroban to Treat a Critically Ill Patient with Coagulopathy and Nephropathy Secondary to COVID-19. TH Open. 2020 Dec 15;4(4):e400-e402. doi: 10.1055/s-0040-1721501. 

89.   Chen A, Stecker E, A Warden B. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. J Am Heart Assoc. 2020 Jul 7;9(13):e017559. doi: 10.1161/JAHA.120.017559.

90.   García-Escobar I, Brozos-Vázquez E, Gutierrez Abad D, Martínez-Marín V, Pachón V, Muñoz Martín AJ; Cancer and Thrombosis Section of the Spanish Society of Medical Oncology (SEOM). Direct oral anticoagulants for the treatment and prevention of venous thromboembolism in patients with cancer: current evidence. Clin Transl Oncol. 2021 Jun;23(6):1034-1046. doi: 10.1007/s12094-020-02506-4. 

91.   Julia S, James U. Direct Oral Anticoagulants: A Quick Guide. Eur Cardiol. 2017 Aug;12(1):40-45. doi: 10.15420/ecr.2017:11:2.

92.   Giles AJ, Hutchinson MND, Sonnemann HM, Jung J, Fecci PE, Ratnam NM, Zhang W, Song H, Bailey R, Davis D, Reid CM, Park DM, Gilbert MR. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer. 2018 Jun 11;6(1):51. doi: 10.1186/s40425-018-0371-5. 

93.   RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 Feb 25;384(8):693-704. doi: 10.1056/NEJMoa2021436.

94.   WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, Annane D, Azevedo LCP, Berwanger O, Cavalcanti AB, Dequin PF, Du B, Emberson J, Fisher D, Giraudeau B, Gordon AC, Granholm A, Green C, Haynes R, Heming N, Higgins JPT, Horby P, Jüni P, Landray MJ, Le Gouge A, Leclerc M, Lim WS, Machado FR, McArthur C, Meziani F, Møller MH, Perner A, Petersen MW, Savovic J, Tomazini B, Veiga VC, Webb S, Marshall JC. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020 Oct 6;324(13):1330-1341. doi: 10.1001/jama.2020.17023.

95.   Michot JM, Albiges L, Chaput N, Saada V, Pommeret F, Griscelli F, Balleyguier C, Besse B, Marabelle A, Netzer F, Merad M, Robert C, Barlesi F, Gachot B, Stoclin A. Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann Oncol. 2020 Jul;31(7):961-964. doi: 10.1016/j.annonc.2020.03.300.

96.   Levi M. Tocilizumab for severe COVID-19: A promising intervention affecting inflammation and coagulation. Eur J Intern Med. 2020 Jun;76:21-22. doi: 10.1016/j.ejim.2020.05.018.

97.   Sobue S, Nomura T, Ishikawa T, Ito S, Saso K, Ohara H, Joh T, Itoh M, Kakumu S. Th1/Th2 cytokine profiles and their relationship to clinical features in patients with chronic hepatitis C virus infection. J Gastroenterol. 2001 Aug;36(8):544-51. doi: 10.1007/s005350170057.

98.   Sageshima J, Ciancio G, Chen L, Burke GW 3rd. Anti-interleukin-2 receptor antibodies-basiliximab and daclizumab-for the prevention of acute rejection in renal transplantation. Biologics. 2009;3:319-36. doi: 10.2147/btt.2009.3257. 

99.   Yamaguchi A, Botta E, Holinstat M. Eicosanoids in inflammation in the blood and the vessel. Front Pharmacol. 2022 Sep 27;13:997403. doi: 10.3389/fphar.2022.997403.

100.        Friedman EA, Ogletree ML, Haddad EV, Boutaud O. Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thromb Res. 2015 Sep;136(3):493-503. doi: 10.1016/j.thromres.2015.05.027.

101.        Takeda T, Hoshida S, Nishino M, Tanouchi J, Otsu K, Hori M. Relationship between effects of statins, aspirin and angiotensin II modulators on high-sensitive C-reactive protein levels. Atherosclerosis. 2003 Jul;169(1):155-8. doi: 10.1016/s0021-9150(03)00158-8.

102.        Artola RT, Mihos CG, Santana O. Effects of Statin Therapy in Patients with Systemic Lupus Erythematosus. South Med J. 2016 Nov;109(11):705-711. doi: 10.14423/SMJ.0000000000000561.

103.        Esmon CT. The interactions between inflammation and coagulation. Br J Haematol. 2005 Nov;131(4):417-30. doi: 10.1111/j.1365-2141.2005.05753.x.

104.        Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020 Jul;20(7):397-398. doi: 10.1038/s41577-020-0346-x.

105.        Salimi-Jeda A, Abbassi S, Mousavizadeh A, Esghaie M, Bokharaei-Salim F, Jeddi F, Shafaati M, Abdoli A. SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies. Int Immunopharmacol. 2021 Dec;101(Pt A):108232. doi: 10.1016/j.intimp.2021.108232.

106.        Subramaniam S, Ogoti Y, Hernandez I, Zogg M, Botros F, Burns R, DeRousse JT, Dockendorff C, Mackman N, Antoniak S, Fletcher C, Weiler H. A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C). Blood Adv. 2021 Jul 13;5(13):2760-2774. doi: 10.1182/bloodadvances.2021004360.

107.        Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol. 2004 Jun;24(6):1015-22. doi: 10.1161/01.ATV.0000130465.23430.74.

108.        Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med. 2021 Dec 12;10(24):5815. doi: 10.3390/jcm10245815.

109.        Bernard, I.; Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses 202113, 29. https://doi.org/10.3390/v13010029

110.        Won T, Wood MK, Hughes DM, Talor MV, Ma Z, Schneider J, Skinner JT, Asady B, Goerlich E, Halushka MK, Hays AG, Kim DH, Parikh CR, Rosenberg AZ, Coppens I, Johns RA, Gilotra NA, Hooper JE, Pekosz A, Čiháková D. Endothelial thrombomodulin downregulation caused by hypoxia contributes to severe infiltration and coagulopathy in COVID-19 patient lungs. EBioMedicine. 2022 Jan;75:103812. doi: 10.1016/j.ebiom.2022.103812.

111.        Wang J, Pendurthi UR, Yi G, Rao LVM. SARS-CoV-2 infection induces the activation of tissue factor-mediated coagulation via activation of acid sphingomyelinase. Blood. 2021 Jul 29;138(4):344-349. doi: 10.1182/blood.2021010685

112.        Nawroth PP, Handley DA, Esmon CT, Stern DM. Interleukin 1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc Natl Acad Sci U S A. 1986 May;83(10):3460-4. doi: 10.1073/pnas.83.10.3460.

113.        May LT, Torcia G, Cozzolino F, Ray A, Tatter SB, Santhanam U, Sehgal PB, Stern D. Interleukin-6 gene expression in human endothelial cells: RNA start sites, multiple IL-6 proteins and inhibition of proliferation. Biochem Biophys Res Commun. 1989 Mar 31;159(3):991-8. doi: 10.1016/0006-291x(89)92206-7. 

114.        Mohseni Afshar Z, Tavakoli Pirzaman A, Hosseinzadeh R, Babazadeh A, Taghizadeh Moghadam MA, Miri SR, Sio TT, Sullman MJM, Barary M, Ebrahimpour S. Anticoagulant therapy in COVID-19: A narrative review. Clin Transl Sci. 2023 Sep;16(9):1510-1525. doi: 10.1111/cts.13569.

115.        Jarvis GE, Atkinson BT, Frampton J, Watson SP. Thrombin-induced conversion of fibrinogen to fibrin results in rapid platelet trapping which is not dependent on platelet activation or GPIb. Br J Pharmacol. 2003 Feb;138(4):574-83. doi: 10.1038/sj.bjp.0705095. 

116.        In response to thrombi, endothelial cells express and secrete a plethora of proinflammatory proteins, including monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), interleukin (IL)-1, interleukin (IL)-6, and interleukin (IL)-8 [221-225]. Through the stimulation of PAR signalling, the TF-FVIIa complex has the ability to trigger further release of inflammatory cytokines and chemokines both in vitro and in vivo [226,227].

117.        Habtemariam, S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 202412, 1169. https://doi.org/10.3390/biomedicines12061169

118.        Fard MB, Fard SB, Ramazi S, Atashi A, Eslamifar Z. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thromb J. 2021 Aug 23;19(1):59. doi: 10.1186/s12959-021-00311-9.

119.        Pelle MC, Zaffina I, Lucà S, Forte V, Trapanese V, Melina M, Giofrè F, Arturi F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life (Basel). 2022 Oct 14;12(10):1605. doi: 10.3390/life12101605. 

120.        Brambilla M, Canzano P, Becchetti A, Tremoli E, Camera M. Alterations in platelets during SARS-CoV-2 infection. Platelets. 2022 Feb 17;33(2):192-199. doi: 10.1080/09537104.2021.1962519.

121.        Hottz ED, Azevedo-Quintanilha IG, Palhinha L, Teixeira L, Barreto EA, Pão CRR, Righy C, Franco S, Souza TML, Kurtz P, Bozza FA, Bozza PT. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020 Sep 10;136(11):1330-1341. doi: 10.1182/blood.2020007252.

122.        Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012 Sep 15;189(6):2689-95. doi: 10.4049/jimmunol.1201719.

123.        Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. 2016 Jul;12(7):383-401. doi: 10.1038/nrneph.2016.70.

124.        Bardhan M, Kaushik R. Physiology, Complement Cascade. [Updated 2023 Feb 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551511/

125.        Conway EM, Mackman N, Warren RQ, Wolberg AS, Mosnier LO, Campbell RA, Gralinski LE, Rondina MT, van de Veerdonk FL, Hoffmeister KM, Griffin JH, Nugent D, Moon K, Morrissey JH. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol. 2022 Oct;22(10):639-649. doi: 10.1038/s41577-022-00762-9.

126.        Riou, M.; Coste, F.; Meyer, A.; Enache, I.; Talha, S.; Charloux, A.; Reboul, C.; Geny, B. Mechanisms of Pulmonary Vasculopathy in Acute and Long-Term COVID-19: A Review. Int. J. Mol. Sci. 202425, 4941. https://doi.org/10.3390/ijms25094941

127.        Guney C, Akar F. Epithelial and Endothelial Expressions of ACE2: SARS-CoV-2 Entry Routes. J Pharm Pharm Sci. 2021;24:84-93. doi: 10.18433/jpps31455. 

128.        Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020 May 2;395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5.

129.        Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 2020 Oct;194:101-115. doi: 10.1016/j.thromres.2020.06.029.

130.        Luo HC, You CY, Lu SW, Fu YQ. Characteristics of coagulation alteration in patients with COVID-19. Ann Hematol. 2021 Jan;100(1):45-52. doi: 10.1007/s00277-020-04305-x.

131.        Hippensteel JA, Burnham EL, Jolley SE. Prevalence of venous thromboembolism in critically ill patients with COVID-19. Br J Haematol. 2020 Aug;190(3):e134-e137. doi: 10.1111/bjh.16908.

132.        Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020 Feb 15;395(10223):470-473. doi: 10.1016/S0140-6736(20)30185-9. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Feb 15;395(10223):496. doi: 10.1016/S0140-6736(20)30250-6. 

133.        Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020 Jul 28;71(15):762-768. doi: 10.1093/cid/ciaa248.

134.        Campbell S, Greenwood M, Prior S, Shearer T, Walkem K, Young S, Bywaters D, Walker K. Purposive sampling: complex or simple? Research case examples. J Res Nurs. 2020 Dec;25(8):652-661. doi: 10.1177/1744987120927206.

135.        Poissy J, Damonti L, Bignon A, Khanna N, Von Kietzell M, Boggian K, Neofytos D, Vuotto F, Coiteux V, Artru F, Zimmerli S, Pagani JL, Calandra T, Sendid B, Poulain D, van Delden C, Lamoth F, Marchetti O, Bochud PY; FUNGINOS; Allfun French Study Groups. Risk factors for candidemia: a prospective matched case-control study. Crit Care. 2020 Mar 18;24(1):109. doi: 10.1186/s13054-020-2766-1.

136.        Esposito, G.; Carsana, A. Metabolic Alterations in Cardiomyocytes of Patients with Duchenne and Becker Muscular Dystrophies. J. Clin. Med. 20198, 2151. https://doi.org/10.3390/jcm8122151

137.        Tang YW, Schmitz JE, Persing DH, Stratton CW. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J Clin Microbiol. 2020 May 26;58(6):e00512-20. doi: 10.1128/JCM.00512-20.

138.        Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care. 2003 Feb;7(1):23-38. doi: 10.1186/cc1854. 

139.        Barbour T, Johnson S, Cohney S, Hughes P. Thrombotic microangiopathy and associated renal disorders. Nephrol Dial Transplant. 2012 Jul;27(7):2673-85. doi: 10.1093/ndt/gfs279.

140.        Farooqi F, Dhawan N, Morgan R, Dinh J, Nedd K, Yatzkan G. Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation During Acute Respiratory Distress: A Case Report and Literature Review. Trop Med Infect Dis. 2020 Jul 3;5(3):112. doi: 10.3390/tropicalmed5030112.

141.        Khiali S, Khani E, Entezari-Maleki T. A Comprehensive Review of Tocilizumab in COVID-19 Acute Respiratory Distress Syndrome. J Clin Pharmacol. 2020 Sep;60(9):1131-1146. doi: 10.1002/jcph.1693. 

142.        de Roquetaillade C, Bredin S, Lascarrou JB, Soumagne T, Cojocaru M, Chousterman BG, Leclerc M, Gouhier A, Piton G, Pène F, Stoclin A, Llitjos JF. Timing and causes of death in severe COVID-19 patients. Crit Care. 2021 Jun 30;25(1):224. doi: 10.1186/s13054-021-03639-w.

Related Images:



Recent Images



Gender Differences in Nutritional Status During Early Adolescence: A Comparative Study in Mohanpur Block, Paschim Medinipur, West Bengal
Association Between Junk Food Consumption Patterns and The Severity of Premenstrual Syndrome
Recent Progress on Acrylamide-Induced Programmed Cell Death (PCD) in Safety Drug Development
Bilayer Tablets in Controlled Drug Delivery: A Comprehensive Review of Modern Formulation Strategies
Sustainable Approaches to Heavy Metal Remediation in Aquatic Systems: Challenges and Innovations
Recent Advancement in Drug Development for Intranasal Drug Delivery System
Management and Treatment of SARS-CoV-induced thrombotic events
Development of HPTLC Fingerprint of Curcuma longa Collected from Different Geographical Locations of Chhattisgarh for Quantification of Curcumin
Understanding Gut Microbiota and Antibiotics Complex Interplay and Clinical Implications
Evaluation of Antibacterial Activity of Silver Nanoparticle Loaded Curcuma Extract Collected from Sarguja District of Chhattisgarh

Tags


Recomonded Articles:

Author(s): Muhammad Manjurul Karim a; Shravan Paswan b; Monika Bhairam c; Sheetal Mishra d

DOI: 10.5281/zenodo.14635348         Access: Open Access Read More

Author(s): Sirajunisa Talath a; Afreen Begum Hasansab Itagi b; Naziya Hamid c

DOI: 10.5281/zenodo.14634105         Access: Open Access Read More

Author(s): Sanjay Kumar Jain 1; Sonia Bajaj 2; Priyambada Singh 3

DOI: 10.5281/zenodo.16929264         Access: Open Access Read More