[1] Saravanan P, Saravanan V, Rajeshkannan R,
Arnica G, Rajasimman M, Baskar G, et al. Comprehensive review on toxic heavy
metals in the aquatic system: sources, identification, treatment strategies,
and health risk assessment. Environ
Res. 2024;258:119440.
[2] Rahman Z, Singh VP. The relative impact of
toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI),
mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 2019;191(419).
[3] Singh M, Yadav D. Physico-Chemical Parameters
for Water Quality Check: A Comprehensive Review. 2022.
[4] Oros A. Bioaccumulation and Trophic Transfer of
Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts. J Xenobiot. 2025 Apr 18;15(2):59. doi:
10.3390/jox15020059. PMID: 40278164; PMCID: PMC12028879.
[5] Ali N, Khan MH, Ali M, Sidra, Ahmad S, Khan A,
et al. Insight into microplastics in the aquatic ecosystem: Properties,
sources, threats and mitigation strategies. Sci Total Environ. 2024;913:169489.
[6] Chatha AMM, Naz S, Naz S, Khan RU, Nawaz A.
Heavy Metal Pollution in Water from Anthropogenic and Natural Activities and
the Remediation Strategies. In: Ahmad MI, Mahamood M, Javed M, Alhewairini SS,
editors. Toxicology and Human
Health. Springer, Singapore; 2023.
[7] Fisher RM, Gupta V. Heavy Metals. [Updated 2024
Feb 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-.
[8] Shaji E, Santosh M, Sarath KV, Prakash P,
Deepchand V, Divya BV. Arsenic contamination of groundwater: A global synopsis
with focus on the Indian Peninsula. Geosci Front. 2021;12(3):101079.
[9] El-Sharkawy M, Alotaibi MO, Li J, Du D, Mahmoud
E. Heavy Metal Pollution in Coastal Environments: Ecological Implications and
Management Strategies: A Review. Sustain. 2025;17(2):1–29.
[10]
Angon PB,
Islam MS, KC S, Das A, Anjum N, Poudel A, et al. Sources, effects and present
perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon. 2024;10(7):e28357.
[11]
Giljum
S, Maus V, Sonter L, et al. Metal
mining is a global driver of environmental change. Nat Rev Earth Environ. 2025;6:441–55.
[12]
Veiga
MM, Maxson PA, Hylander LD. Origin
and consumption of mercury in small-scale gold mining. J Clean Prod. 2006;14(3):436–47.
[13]
Suciu NA,
De Vivo R, Rizzati N, Capri E. Cd content in phosphate fertilizer: Which
potential risk for the environment and human health? Curr Opin Environ Sci Heal. 2022;30:100392.
[14]
Oladimeji
TE, Oyedemi M, Emetere ME, Agboola O, Adeoye JB, Odunlami OA. Review on the
impact of heavy metals from industrial wastewater effluent and removal
technologies. Heliyon.
2024;10(23):e40370.
[15]
Jahan S,
Singh A. Causes and Impact of Industrial Effluents on Receiving Water Bodies: A
Review. Malaysian J Sci Adv
Technol. 2023 May 27;111–21.
[16]
Gupta V,
Lal K, Uttreja M. Contamination of Heavy Metals in India: Health Effects and
Remediation Measures. 2021.
[17]
Fowler BA.
General subcellular effects of lead, mercury, cadmium, and arsenic. Environ Health Perspect. 1978
Feb;22:37-41. doi: 10.1289/ehp.782237. PMID: 648490; PMCID: PMC1637139.
[18]
Pericherla
S, Vara S. Study on Agricultural Runoff Causing Heavy Metal Contamination in
Surface Waters. 2024;28(1):1268–80.
[19]
Kasturappa
G, S N U, N B, Rangaiah K. Heavy Metal Content In Chemical Fertilizers and its
Implications on Agroecosystems and Human Health. In: 2023. p. 1748–59.
[20]
Montalvo
D, Degryse F, da Silva RC, Baird R, McLaughlin MJ. Chapter Five - Agronomic
Effectiveness of Zinc Sources as Micronutrient Fertilizer. In: Sparks DLBTA in
A, editor. Advances in Agronomy. Academic Press; 2016. p. 215–67.
[21]
Cao X,
Chen S, Liu Y, et al. Domestic wastewater is an overlooked source and quantity
in global river dissolved carbon. Nat Commun. 2025;16:7522.
[22]
Hama
Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic
environment: efficient and low-cost removal approaches to eliminate their
toxicity: a review. RSC Adv.
2023 Jun 12;13(26):17595-17610. doi: 10.1039/d3ra00723e. PMID: 37312989; PMCID:
PMC10258679.
[23]
Briffa J,
Sinagra E, Blundell R. Heavy metal pollution in the environment and their
toxicological effects on humans. Heliyon. 2020;6(9):e04691.
[24]
Adam A,
Abubakar M, Dwanga D, Muhammad S, Obasi E. Heavy metal leaching from landfills:
A review of groundwater contamination and long term environmental impacts. 2024.
[25]
Iravanian
A, Ostovar Ravari S. Types of contamination in landfills and effects on the
environment: A review study. IOP Conf Ser Earth Environ Sci. 2020 Dec 18;614:12083.
[26]
Igwegbe
CA, López-Maldonado EA, Landázuri AC, Ovuoraye PE, Ogbu AI, Vela-García N, et
al. Sustainable municipal landfill
leachate management: Current practices, challenges, and future directions. Desalin Water Treat. 2024;320:100709.
[27]
Huang Z,
Liu G, Zhang Y, Yuan Y, Xi B, Tan W. Assessing the impacts and contamination
potentials of landfill leachate on adjacent groundwater systems. Sci Total Environ. 2024;930:172664.
[28]
Drall JK,
Rautela R, Jambhulkar R, Kataria AK, Kumar S. Effect of heavy metals
contamination due to leachate migration from uncontrolled dumpsites: A
comprehensive analysis on soil and groundwater. J Environ Manage. 2025;373:123473.
[29]
Peirce
JJ, Weiner RF, Vesilind PA. Chapter
10 - Nonpoint source water pollution. In: Peirce JJ, Weiner RF, Vesilind PA, editors. Woburn:
Butterworth-Heinemann; 1998. p. 137–43.
[30]
Viman O,
Oroian I, Fleseriu A. Types of water pollution: Point source and nonpoint
source. Aquac Aquarium,
Conserv Legis. 2010 Dec 1;3.
[31]
Dashtey A.
Fate and transport of heavy metals in soil, surface water, and groundwater:
Implications for environmental management. Int J Sci Res Manag. 2024 Dec 28;12:202–15.
[32]
Ma J, Wu
S, Shekhar NVR, Biswas S, Sahu AK. Determination of physicochemical parameters
and levels of heavy metals in food waste water with environmental effects. Bioinorg Chem Appl. 2020 Aug
20;2020:8886093. doi: 10.1155/2020/8886093. PMID: 32884567; PMCID: PMC7455830.
[33]
Kotnala S,
Tiwari S, Nayak A, Bhushan B, Chandra S, Medeiros CR, et al. Impact of heavy
metal toxicity on the human health and environment. Sci Total Environ. 2025;987:179785.
[34]
Rasin P, V
AA, Basheer SM, Haribabu J, Santibanez JF, Garrote CA, et al. Exposure to
cadmium and its impacts on human health: A short review. J Hazard Mater Adv. 2025;17:100608.
[35]
Hassaan M,
El Nemr A, Madkour F. Environmental assessment of heavy metal pollution and
human health risk. Am J Water
Sci Eng. 2016 Nov 3;2:14–9.
[36]
Saad A,
El-Sikaily A, Kassem H. Essential, non-essential metals and human health. In:
Pollution Status, Environmental Protection, and Renewable Energy production in
Marine Systems. 2016. p.
87–135.
[37]
Zahran
E, Mamdouh AZ, Elbahnaswy S, et al. The
impact of heavy metal pollution: bioaccumulation, oxidative stress, and
histopathological alterations in fish across diverse habitats. Aquacult Int. 2025;33:371.
[38]
Geevarghese
R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, et al.
Biodegradable and non-biodegradable biomaterials and their effect on cell
differentiation. Int J Mol Sci. 2022 Dec 19;23(24):16185. doi:
10.3390/ijms232416185. PMID: 36555829; PMCID: PMC9785373.
[39]
Drouillard
KG. Biomagnification. In: Jørgensen SE, Fath BD, editors. Encyclopedia of Ecology. Oxford: Academic Press;
2008. p. 441–8.
[40]
Nazmul
MHM, Devaraj S, Farzana Y, Vasu N, Gupalo S, Doustjalali SR, et al.
Bioaccumulation of heavy metals in aquatic organisms and its effects on human
consumption. Int J Aquat Res
Environ Stud. 2025;5(1):262–88.
[41]
Obaiah J,
Vivek C, Padmaja B, Sridhar D, Peera K. Cadmium toxicity impact on aquatic
organisms-oxidative stress: Implications for human health, safety and
environmental aspects-a review. Int J Sci Technol Res. 2020;9(3):4172–85.
[42]
Biswas P,
Biswas JK. Cadmium toxicity and defense mechanism in aquatic macrophytes. In:
Aftab T, editor. Plant Responses to Cadmium Toxicity. Environmental Science and
Engineering. Springer, Cham;
2024.
[43]
OMS.
Exposure to cadmium: a major public health concern. Prev Dis Through Heal
Environ. 2010;3–6.
[44]
Prasad S,
Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S, et al. Chromium
contamination and effect on environmental health and its remediation: A
sustainable approach. J
Environ Manage. 2021;285:112174.
[45]
Kotaś J,
Stasicka Z. Chromium occurrence in the environment and methods of its
speciation. Environ Pollut.
2000;107(3):263–83.
[46]
Suljević
D, Fočak M, Alijagic A. Assessing chromium toxicity across aquatic and
terrestrial environments: A cross-species review. Drug Chem Toxicol. 2024 Nov;47(6):1312–24. doi:
10.1080/01480545.2024.2350660. Epub 2024 May 10. PMID: 38727006.
[47]
Rahman
Z, Thomas L, Chetri SPK, et al. A
comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant
extremophiles in diverse extreme environments. Environ Sci Pollut Res. 2023;30:59163–91.
[48]
Costa MI,
Sarmento-Ribeiro AB, Gonçalves AC. Zinc: From biological functions to
therapeutic potential. Int J Mol Sci. 2023 Mar 2;24(5):4822. doi:
10.3390/ijms24054822. PMID: 36902254; PMCID: PMC10003636.
[49]
Krężel A,
Maret W. The biological inorganic chemistry of zinc ions. Arch Biochem Biophys. 2016;611:3–19.
[50]
Plum LM,
Rink L, Haase H. The essential toxin: impact of zinc on human health. Int J
Environ Res Public Health. 2010 Apr;7(4):1342–65. doi: 10.3390/ijerph7041342.
Epub 2010 Mar 26. PMID:
20617034; PMCID: PMC2872358.
[51]
Singh
Sankhla M, Kumar R, Prasad L. Zinc impurity in drinking water and its toxic
effect on human health. Indian
Internet J Forensic Med Toxicol. 2019 Nov 21;17:84.
[52]
Festa RA,
Thiele DJ. Copper: an essential metal in biology. Curr Biol. 2011 Nov
8;21(21):R877–83. doi: 10.1016/j.cub.2011.09.040. PMID: 22075424; PMCID: PMC3718.
[53]
Cui L,
Cheng C, Li X, Gao X, Lv X, Wang Y, et al. Comprehensive assessment of copper’s
effect on marine organisms under ocean acidification and warming in the 21st
century. Sci Total Environ.
2024;927:172145.
[54]
Kumar V,
Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, et al. Copper
bioavailability, uptake, toxicity and tolerance in plants: A comprehensive
review. Chemosphere.
2021;262:127810.
[55]
Gui W,
Wang WX. Copper redox state in cells and aquatic organisms: Implication for
toxicity. J Hazard Mater.
2024;476:135039.
[56]
Das S,
Sultana KW, Ndhlala AR, Mondal M, Chandra I. Heavy metal pollution in the
environment and its impact on health: Exploring green technology for
remediation. Environ Health
Insights. 2023 Oct 5;17:11786302231201259. doi: 10.1177/11786302231201259.
PMID: 37808962; PMCID: PMC10559720.
[57]
Mostofa
KMG, Yoshioka T, Mottaleb A, Vione D, editors. Complexation of dissolved
organic matter with trace metal ions in natural waters. In:
Photobiogeochemistry of Organic Matter. Environmental Science and Engineering.
Springer, Berlin, Heidelberg; 2013.
[57]
[58]
Abanyie
SK, Apea OB, Abagale SA, Amuah EEY, Sunkari ED. Sources and factors influencing
groundwater quality and associated health implications: A review. Emerg Contam. 2023;9(2):100207.
[59]
Xu X,
Mills GL. Do constructed wetlands remove metals or increase metal
bioavailability? J Environ
Manage. 2018;218:245–55.
[60]
Yan LJ,
Allen DC. Cadmium-induced kidney injury: Oxidative damage as a unifying
mechanism. Biomolecules. 2021
Oct 23;11(11):1575. doi: 10.3390/biom11111575. PMID: 34827573; PMCID:
PMC8615899.
[61]
Hong YS,
Kim YM, Lee KE. Methylmercury exposure and health effects. J Prev Med Public
Health. 2012 Nov;45(6):353–63. doi: 10.3961/jpmph.2012.45.6.353. Epub 2012 Nov
29. PMID: 23230465; PMCID:
PMC3514465.
[62]
Collin
MS, Venkatraman SK, Vijayakumar N, Kanimozhi V, Arbaaz SM, Stacey RGS, et al. Bioaccumulation of lead (Pb) and its effects on
human: A review. J Hazard
Mater Adv. 2022;7:100094.
[63]
Rao CV,
Pal S, Mohammed A, Farooqui M, Doescher MP, Asch AS, Yamada HY. Biological
effects and epidemiological consequences of arsenic exposure, and reagents that
can ameliorate arsenic damage in vivo. Oncotarget. 2017 May 10;8(34):57605–21. doi: 10.18632/oncotarget.17745.
PMID: 28915699; PMCID: PMC5593671.
[64]
Sun H,
Brocato J, Costa M. Oral chromium exposure and toxicity. Curr Environ Health
Rep. 2015 Sep;2(3):295–303. doi: 10.1007/s40572-015-0054-z. PMID: 26231506; PMCID: PMC4522702.
[65]
Tang
HQ, Xu M, Rong Q, Jin RW, Liu QJ, Li YL. The effect of ZnO nanoparticles on liver function in rats. Int J
Nanomedicine. 2016 Aug 31;11:4275–85. doi: 10.2147/IJN.S109031. PMID: 27621621;
PMCID: PMC5012617.
[66]
Liu H, Guo
H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Copper induces
oxidative stress and apoptosis in the mouse liver. Oxid Med Cell Longev. 2020 Jan 11;2020:1359164.
doi: 10.1155/2020/1359164. PMID: 32411316; PMCID: PMC7201649.
[67]
Marghade
D, Malpe DB, Subba Rao N. Applications of geochemical and multivariate
statistical approaches for the evaluation of groundwater quality and human
health risks in a semi-arid region of eastern Maharashtra, India. Environ Geochem Health. 2021;43:683–703.
[68]
Ferreira
SLC, da Silva JB, dos Santos IF, de Oliveira OMC, Cerda V, Queiroz AFS. Use of
pollution indices and ecological risk in the assessment of contamination from
chemical elements in soils and sediments – Practical aspects. Trends Environ Anal Chem. 2022;35:e00169.
[69]
Sethi S.
Holistic approach to remediate heavy metals and radionuclides. In: Shah MP, editor. Industrial Wastewater
Reuse. Springer, Singapore; 2023.
[70]
Pradhoshini
KP, Priyadharshini M, Santhanabharathi B, Ahmed MS, Parveen MHS, War MUD, et
al. Biological effects of ionizing
radiation on aquatic biota – A critical review. Environ Toxicol Pharmacol. 2023;99:104091.
[71]
Kavasi
N, Arae H, Aono T, Sahoo SK. Distribution
of strontium-90 in soils affected by Fukushima Dai-ichi nuclear power station
accident in the context of cesium-137 contamination. Environ Pollut. 2023;326:121487.
[72]
Pandey PK,
Kass PH, Soupir ML, Biswas S, Singh VP. Contamination of water resources by
pathogenic bacteria. AMB
Express. 2014 Jun 28;4:51. doi: 10.1186/s13568-014-0051-x. PMID: 25006540;
PMCID: PMC4077002.
[73]
Waqas U,
Farhan A, Haider A, Qumar U, Raza A. Advancements in biofilm formation and
control in potable water distribution systems: A comprehensive review and
analysis of chloramine decay in water systems. J Environ Chem Eng. 2023;11(6):111377.
[74]
Dawam M,
Gobara M, Oraby H, et al. Advances in membrane technologies for heavy metal
removal from polluted water: A comprehensive review. Water Air Soil Pollut. 2025;236:461.
[75]
Song Y,
Dong B, Gao N, Deng Y. Comparative evaluation of aluminum sulfate and ferric
sulfate-induced coagulations as pretreatment of microfiltration for treatment
of surface water. Int J Environ Res Public Health. 2015 Jun 12;12(6):6700–9.
doi: 10.3390/ijerph120606700. PMID: 26075726; PMCID: PMC4483725.
[76]
Fu ZJ,
Jiang SK, Chao XY, Zhang CX, Shi Q, Wang ZY, et al. Removing miscellaneous
heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Res. 2022;222:118888.
[77]
Priyadarshanee
M, Das S. Biosorption and removal of toxic heavy metals by metal-tolerating
bacteria for bioremediation of metal contamination: A comprehensive review. J
Environ Chem Eng. 2021;9(1):104686.
[78]
Bhat SA,
Bashir O, Ul Haq SA, Amin T, Rafiq A, Ali M, et al. Phytoremediation of heavy
metals in soil and water: An eco-friendly, sustainable and multidisciplinary
approach. Chemosphere.
2022;303:134788.
[79]
Yaashikaa
PR, Kumar PS, Saravanan A, Vo DVN. Advances in biosorbents for removal of
environmental pollutants: A review on pretreatment, removal mechanism and
future outlook. J Hazard
Mater. 2021;420:126596.
[80]
Bala S,
Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M. Recent
strategies for bioremediation of emerging pollutants: A review for a green and
sustainable environment. Toxics.
2022 Aug 19;10(8):484. doi: 10.3390/toxics10080484. PMID: 36006163; PMCID:
PMC9413587.
[81]
Kafle A,
Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation:
Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 2022;8:100203.
[82]
Babu S,
Singh Rathore S, Singh R, Kumar S, Singh VK, Yadav SK, et al. Exploring
agricultural waste biomass for energy, food and feed production and pollution
mitigation: A review. Bioresour
Technol. 2022;360:127566.
[83]
Shahcheraghi
N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an
applicable approach for sustainable future. 3 Biotech. 2022 Mar;12(3):65. doi:
10.1007/s13205-021-03108-9. Epub 2022 Feb 9. PMID: 35186662; PMCID: PMC8828840.
[84]
Chavali
MS, Nikolova MP. Metal oxide nanoparticles and their applications in
nanotechnology. SN Appl Sci.
2019;1:607.
[85]
Tonelli
FMP, Tonelli FCP. Chapter 10 - Biocompatibility of green synthesized
nanomaterials. In: Ozturk M, Roy A, Bhat RA, Vardar-Sukan F, Policarpo Tonelli
FMBTS of B for BA, editors. Micro
and Nano Technologies. Elsevier; 2023. p. 209–23.
[86]
Satchanska
G, Davidova S, Petrov PD. Natural and synthetic polymers for biomedical and
environmental applications. Polymers
(Basel). 2024 Apr 20;16(8):1159. doi: 10.3390/polym16081159. PMID: 38675078;
PMCID: PMC11055061.
[87]
Sharma S,
Bhende M. An overview: Non-toxic and eco-friendly polysaccharides—its
classification, properties, and diverse applications. Polym Bull.
2024;81:12383–12429.