[1] Safiri
S, Gha A, Fazlollahi A. Alzheimer ’ s disease : a comprehensive review of
epidemiology , risk factors , symptoms diagnosis , management , caregiving ,
advanced treatments and associated challenges n.d.
[2] L
T, M R, M R, A L, C P, C Z, et al. Emotions and Caregiver’s Needs in Patients
with Alzheimer’s Disease: The Caregiver Burden. Epidemiology and Public Health
2024;2:3–8. https://doi.org/10.52768/epidemiolpublichealth/1037.
[3] Posters.
J Prev Alzheimers Dis 2019;6:45–154. https://doi.org/10.14283/jpad.2019.48.
[4] Drummond
E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta
Neuropathol 2017;133:155–75. https://doi.org/10.1007/s00401-016-1662-x.
[5] Rábago-Monzón
ÁR, Osuna-Ramos JF, Armienta-Rojas DA, Camberos-Barraza J, Camacho-Zamora A,
Magaña-Gómez JA, et al. Stress-Induced Sleep Dysregulation: The Roles of
Astrocytes and Microglia in Neurodegenerative and Psychiatric Disorders.
Biomedicines 2025, Vol 13, Page 1121 2025;13:1121.
https://doi.org/10.3390/BIOMEDICINES13051121.
[6] Yang
E, Abd-Elrahman KS. Alzheimer’s disease treatment landscape: current therapies
and emerging mechanism-targeted approaches. Neural Regen Res 2024;20:3531.
https://doi.org/10.4103/NRR.NRR-D-24-00934.
[7] Sharifi-Rad
J, Rayess Y El, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and Its
Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for
Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front
Pharmacol 2020;11:01021. https://doi.org/10.3389/FPHAR.2020.01021.
[8] Reddy
PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, et al. Protective Effects
of Indian Spice Curcumin Against Amyloid Beta in Alzheimer’s Disease. J
Alzheimers Dis 2018;61:843. https://doi.org/10.3233/JAD-170512.
[9] Kumar
SSD, Houreld NN, Abrahamse H. Therapeutic Potential and Recent Advances of
Curcumin in the Treatment of Aging-Associated Diseases. Molecules 2018, Vol
23, Page 835 2018;23:835. https://doi.org/10.3390/MOLECULES23040835.
[10] Yusuf
A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug
Delivery Systems: A Review of the Implication of Nanoparticles’
Physicochemical Properties on Responses in Biological Systems. Polymers
(Basel) 2023;15:1596. https://doi.org/10.3390/POLYM15071596.
[11] Parvin
N, Aslam M, Joo SW, Mandal TK. Nano-Phytomedicine: Harnessing Plant-Derived
Phytochemicals in Nanocarriers for Targeted Human Health Applications.
Molecules 2025;30:3177. https://doi.org/10.3390/MOLECULES30153177.
[12] Tiwari
SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, et al. Curcumin-Loaded
Nanoparticles Potently Induce Adult Neurogenesis and Reverse Cognitive
Deficits in Alzheimer’s Disease Model via Canonical Wnt/β-Catenin Pathway. ACS
Nano 2013;8:76–103. https://doi.org/10.1021/NN405077Y.
[13] Cheng
KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L. Highly Stabilized Curcumin
Nanoparticles Tested in an In Vitro Blood–Brain Barrier Model and in
Alzheimer’s Disease Tg2576 Mice. AAPS J 2012;15:324.
https://doi.org/10.1208/S12248-012-9444-4.
[14] Ghaly
HSA, Seyedasli N, Varamini P. Enhanced Nanoprecipitation Method for the
Production of PLGA Nanoparticles for Oncology Applications. AAPS Journal
2025;27. https://doi.org/10.1208/S12248-025-01096-9.
[15] Arzani
H, Adabi M, Mosafer J, Dorkoosh F, Khosravani M, Maleki H, et al. Preparation
of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity
effects on human glioblastoma U87MG cells n.d.
https://doi.org/10.33263/BRIAC95.225231.
[16] Roshan
Z, Haddadi-Asl V, Ahmadi H, Moussaei M. Curcumin-Encapsulated
Poly(lactic-co-glycolic acid) Nanoparticles: A Comparison of Drug Release
Kinetics from Particles Prepared via Electrospray and Nanoprecipitation.
Macromol Mater Eng 2024;309. https://doi.org/10.1002/MAME.202400040.
[17] Santonocito
D, Sarpietro MG, Carbone C, Panico A, Campisi A, Siciliano EA, et al. Curcumin
Containing PEGylated Solid Lipid Nanoparticles for Systemic Administration: A
Preliminary Study. Molecules 2020, Vol 25, Page 2991 2020;25:2991.
https://doi.org/10.3390/MOLECULES25132991.
[18] Luna-Cervantes
M, Iza-Anaya M, Uriel Rodríguez-Fuentes C, Varela-Pérez A, Cano-Sarmiento C.
Synthesis, Suspension Stability, and Bioactivity of Curcumin-Carrying Chitosan
Polymeric Nanoparticles. Materials Proceedings 2025, Vol 28, Page 6 2025;28:6.
https://doi.org/10.3390/MATERPROC2025028006.
[19] Hodoroaba
VD, Rades S, Salge T, Mielke J, Ortel E, Schmidt R. Characterisation of
nanoparticles by means of high-resolution SEM/EDS in transmission mode. IOP
Conf Ser Mater Sci Eng 2016;109.
https://doi.org/10.1088/1757-899X/109/1/012006.
[20] SAWANT
P, KAREKAR P, WAGHMARE K. FORMULATION AND CHARACTERIZATION OF SOLID LIPID
NANOPARTICLES CONTAINING GINGER OIL FOR ENHANCEMENT OF STABILITY. Int J Pharm
Pharm Sci 2020:36–44. https://doi.org/10.22159/IJPPS.2020V12I6.37357.
[21] Rapaka
D, Adiukwu PC, Bitra VR. Experimentally induced animal models for cognitive
dysfunction and Alzheimer’s disease. MethodsX 2022;9:101933.
https://doi.org/10.1016/J.MEX.2022.101933.
[22] Bye
CM, Hong NS, Moore K, Deibel SH, McDonald RJ. The effects of pool shape
manipulations on rat spatial memory acquired in the Morris water maze.
Learning & Behavior 2018 47:1 2018;47:29–37.
https://doi.org/10.3758/S13420-018-0319-0.
[23] Kim
J, Kang H, Lee YB, Lee B, Lee D. A quantitative analysis of spontaneous
alternation behaviors on a Y-maze reveals adverse effects of acute social
isolation on spatial working memory. Sci Rep 2023;13:14722-.
https://doi.org/10.1038/S41598-023-41996-4;SUBJMETA.
[24] Lueptow
LM. Novel Object Recognition Test for the Investigation of Learning and Memory
in Mice. J Vis Exp 2017;2017:55718. https://doi.org/10.3791/55718.
[25] Mostafi
E;, Elhessni H;, Laaziz A;, Mesfioui A;, Cauli O, Doumar H, et al. Comparative
Study of Injected Alzheimer’s Disease Models in Rats: Insights from
Experimental Research. Pathophysiology 2024, Vol 31, Pages 643-659
2024;31:643–59. https://doi.org/10.3390/PATHOPHYSIOLOGY31040047.
[26] Marcatti
M, Tumurbaatar B, Zhang WR, Scaduto P, Guptarak J, Kadamangudi S, et al. A
brain‐derived tau oligomer polymorph is associated with cognitive resilience
to Alzheimer’s disease. Alzheimer’s & Dementia 2025;21:e70550.
https://doi.org/10.1002/ALZ.70550.
[27] Sharifi-Rad
J, Rapposelli S, Sestito S, Herrera-Bravo J, Arancibia-Diaz A, Salazar LA, et
al. Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects
on Oxidative Stress, Neuroinflammation and Protein Aggregation. Journal of
Personalized Medicine 2022, Vol 12, Page 1515 2022;12:1515.
https://doi.org/10.3390/JPM12091515.
[28] Lehoczki
A, Fekete M, Jarecsny T, Zábó V, Szappanos Á, Csípő T, et al. The
Neuroprotective Role of Curcumin: From Molecular Pathways to Clinical
Translation-A Narrative Review. Nutrients 2025;17.
https://doi.org/10.3390/NU17172884.
[29] Ribovski
L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain
Delivery. Pharmaceutics 2021;13:2045.
https://doi.org/10.3390/PHARMACEUTICS13122045.
[30] Özdal
ZD, Gültekin Y, Vural İ, Takka S. Development and characterization of
polymeric nanoparticles containing ondansetron hydrochloride as a hydrophilic
drug. J Drug Deliv Sci Technol 2022;74.
https://doi.org/10.1016/J.JDDST.2022.103599.
[31] Elnaggar
YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Novel piperine-loaded
Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in
Alzheimer’s disease: Pharmaceutical, biological, and toxicological studies.
Int J Nanomedicine 2015;10:5459–73. https://doi.org/10.2147/IJN.S87336.
[32] Keshta
AT, Abdelrahman SA, Alamin AM. Evaluating the Neuroprotective Effects of
Curcumin Nanoparticles on the Biochemical and Histological Alterations in
Aluminum Chloride-Induced Alzheimer’s Disease in rats. Egypt J Chem
2025;68:309–22. https://doi.org/10.21608/EJCHEM.2024.287556.9679.
[33] Kakkar
V, Kaur IP. Evaluating potential of curcumin loaded solid lipid nanoparticles
in aluminium induced behavioural, biochemical and histopathological
alterations in mice brain. Food and Chemical Toxicology 2011;49:2906–13.
https://doi.org/10.1016/J.FCT.2011.08.006.
[34] Ntondini
TL, Naki T, Alven S. The therapeutic efficacy of nanoparticles in the
treatment of alzheimer’s disease. Acta Neurologica Belgica 2025 2025:1–19.
https://doi.org/10.1007/S13760-025-02905-W.