Abstract View

Author(s): Muhammad Manjurul Karim a, Shravan Paswan b, Monika Bhairam c, Sheetal Mishra d

Email(s): manjur@du.ac.bd

Address:

    a Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
    b Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh - 226010, India
    c Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur, Chhattisgarh – 493111, India
    d Department of Pharmaceutics, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research (Shri Shankaracharya Professional University), Bhilai, India

Published In:   Volume - 1,      Issue - 2,     Year - 2024

DOI: 10.5281/zenodo.14635348  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Gut microbiota, or the dynamic collective of microbial populations in the human gastrointestinal tract, plays a central role in health and disease in humans. It modulates metabolic functions, immunity, and gut-brain interplays. As antibiotics are perceived as being necessary in fighting bacterial infections, they can dramatically modify the gut microbiota. This review addresses the complicated interactions between antibiotics and the gut microbiota and considers mechanisms, effects, and possible mitigative strategies. Antibiotics, especially broad-spectrum variants, eliminate both pathogenic and commensal bacteria, leading to a state of dysbiosis. Dysbiosis is associated with several short- and long-term health effects, including metabolic disorders, immune dysfunction, gastrointestinal diseases, and even neurological conditions. Effects vary dose and type depending on the nature of the antibiotic, treatment time, and human microbiome individual composition. Recovery of the gut microbiota from antibiotic exposure can be variable in some cases since some species resist while others remain depleted forever. Such an imbalance may predispose individuals to opportunistic infections and chronic conditions. There is growing evidence of the need to preserve the health of microbiota during antibiotic therapy. There are strategies that counterbalance the harmful impact of antibiotics, such as the use of probiotics, prebiotics, and fecal microbiota transplantation (FMT). Advances in personalized medicine now hold new promises for tailored antibiotic treatment aimed at minimizing gut microbiome. In addition, diagnostics and therapeutics emerge based on microbiomes that seek to restore balance with microbes. This review underlines the necessity to adopt antibiotic use cautiously and research microbiota-preserving interventions further. Only through an appreciation of the intricate dynamics between antibiotics and gut microbiota can therapeutic efficacy coupled with unintended health risks be minimized. Maintaining a balance between effective infection control and preservation of the health of microbiota is a significant challenge and opportunity in modern medicine.

Cite this article:
Karim MM, Paswan S, Bhairam M, Mishra S. Understanding Gut Microbiota and Antibiotics Complex Interplay and Clinical Implications. Prob. Sci., 2024;1(2): 46–57.DOI: https://doi.org/10.5281/zenodo.14635348


[1].  Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther [Internet]. 2022;7(1):135

[2].  Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012 Jan-Feb;3(1):4-14.

[3].  Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel). 2023 Nov 15;16(11):1615

[4].  Lathakumari RH, Vajravelu LK, Satheesan A, Ravi S, Thulukanam J. Antibiotics and the gut microbiome: Understanding the impact on human health. Med Microecol [Internet]. 2024;20:100106.

[5].  Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022 Feb;11(1):e1260.

[6].  Elvers KT, Wilson VJ, Hammond A, Duncan L, Huntley AL, Hay AD, van der Werf ET. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open. 2020 Sep 21;10(9):e035677.

[7].  Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as Major Disruptors of Gut Microbiota. Front Cell Infect Microbiol. 2020 Nov 24;10:572912

[8].  Kesavelu D, Jog P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis. 2023 Feb 24;10:20499361231154443.

[9].  Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol. 2022 Oct 20;13:906258.

[10].                   Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota's effect on mental health: The gut-brain axis. Clin Pract. 2017 Sep 15;7(4):987.

[11].                   Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol. 2023 Apr 14;29(14):2078-2100. doi: 10.3748/wjg.v29.i14.2078. Erratum in: World J Gastroenterol. 2023 Sep 21;29(35):5178-5179

[12].                   Cheng YW, Fischer M. Fecal Microbiota Transplantation. Clin Colon Rectal Surg. 2023 Jan 25;36(2):151-156.

[13].                   Andreescu M. Molecular Insights Into the Role of Gut Microbiota in Antibiotic Therapy Selection and Resistance Mitigation. Cureus. 2023 Dec 11;15(12):e50318.

[14].                   Konstantinidis T, Tsigalou C, Karvelas A, Stavropoulou E, Voidarou C, Bezirtzoglou E. Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines. 2020 Nov 16;8(11):502.

[15].                   Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019 Jan 10;7(1):14.

[16].                   Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020 May 19;12(5):1474.

[17].                   Effendi RMRA, Anshory M, Kalim H, Dwiyana RF, Suwarsa O, Pardo LM, Nijsten TEC, Thio HB. Akkermansia muciniphila and Faecalibacterium prausnitzii in Immune-Related Diseases. Microorganisms. 2022 Nov 30;10(12):2382.

[18].                   Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, Cammarota G, Ianiro G. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients. 2023 May 6;15(9):2211.

[19].                   Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQ, Sperandio M, Di Ciaula A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci. 2022 Jan 20;23(3):1105.

[20].                   Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017 Jan;101(1):47-64.

[21].                   Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. J Immunol. 2013 Feb 15;190(4):1389-95.

[22].                   Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes. 2023 Dec;15(2):2291164.

[23].                   Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. Microbiology (Reading). 2023 Aug;169(8):001377

[24].                   Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol. 2021;11(5):1463-1482.

[25].                   Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020 Jan 31;11:25.

[26].                   Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol. 2022 Oct 20;13:906258.

[27].                   Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as Major Disruptors of Gut Microbiota. Front Cell Infect Microbiol [Internet]. 2020;10.

[28].                   Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39.

[29].                   Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018;3(11):1255–65.

[30].                   Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest. 2014;124(10):4182–9.

[31].                   Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016;352(6285):535–8.

[32].                   Flint HJ, Scott KP, Duncan SH, et al. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306.

[33].                   Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(1):4554–61.

[34].                   van Schaik W. The human gut resistome. Philos Trans R Soc Lond B Biol Sci. 2015;370(1670):20140087.

[35].                   Smillie CS, Smith MB, Friedman J, et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480(7376):241–4.

[36].                   Sommer MO, Dantas G, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 2009;325(5944):1128–31.

[37].                   Tumbarello M, Spanu T, Di Bidino R, et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-β-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother. 2010;54(10):4085–91.

[38].                   Belzer C, de Vos WM. Microbes inside–from diversity to function: the case of Akkermansia. ISME J. 2012;6(8):1449–58.

[39].                   Yang L, Bajinka O, Jarju PO, Tan Y, Taal AM, Ozdemir G. The varying effects of antibiotics on gut microbiota. AMB Express. 2021 Aug 16;11(1):116.

[40].                   Pal R, Athamneh AIM, Deshpande R, Ramirez JAR, Adu KT, Muthuirulan P, Pawar S, Biazzo M, Apidianakis Y, Sundekilde UK, de la Fuente-Nunez C, Martens MG, Tegos GP, Seleem MN. Probiotics: insights and new opportunities for Clostridioides difficile intervention. Crit Rev Microbiol. 2023 May;49(3):414-434.

[41].                   Bhattarai SK, Du M, Zeamer AL, M Morzfeld B, Kellogg TD, Firat K, Benjamin A, Bean JM, Zimmerman M, Mardi G, Vilbrun SC, Walsh KF, Fitzgerald DW, Glickman MS, Bucci V. Commensal antimicrobial resistance mediates microbiome resilience to antibiotic disruption. Sci Transl Med. 2024 Jan 17;16(730):eadi9711

[42].                   Ng KM, Aranda-Díaz A, Tropini C, Frankel MR, Van Treuren W, O'Loughlin CT, Merrill BD, Yu FB, Pruss KM, Oliveira RA, Higginbottom SK, Neff NF, Fischbach MA, Xavier KB, Sonnenburg JL, Huang KC. Recovery of the Gut Microbiota after Antibiotics Depends on Host Diet, Community Context, and Environmental Reservoirs. Cell Host Microbe. 2019 Nov 13;26(5):650-665.e4. doi: 10.1016/j.chom.2019.10.011. Erratum in: Cell Host Microbe. 2020 Oct 7;28(4):628.

[43].                   LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–8.

[44].                   Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

[45].                   Cryan JF, O’Riordan KJ, Cowan CS, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013.

[46].                   DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis. 2016 May;22(5):1137-50.

[47].                   Patra D, Banerjee D, Ramprasad P, Roy S, Pal D, Dasgupta S. Recent insights of obesity-induced gut and adipose tissue dysbiosis in type 2 diabetes. Front Mol Biosci. 2023 Sep 28;10:1224982.

[48].                   Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ, Wurster JI, Nilson R, Guang A, Sano WH, Rowan-Nash AD, Li H, Belenky P. Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metab. 2019 Oct 1;30(4):800-823.e7.

[49].                   Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine [Internet]. 2020;51:102590.

[50].                   Gobbo MM, Bomfim MB, Alves WY, Oliveira KC, Corsetti PP, de Almeida LA. Antibiotic-induced gut dysbiosis and autoimmune disease: A systematic review of preclinical studies. Autoimmun Rev [Internet]. 2022;21(9):103140.

[51].                   Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2023 Feb;20(2):81-100.

[52].                   Salvi PS, Cowles RA. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells. 2021 Jul 14;10(7):1775

[53].                   Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients. 2021 Jun 19;13(6):2099.

[54].                   Hayer SS, Hwang S, Clayton JB. Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: a systematic review and meta-analysis. Front Neurosci. 2023 Sep 1;17:1237177

[55].                   Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites. 2022 Nov 3;12(11):1064.

[56].                   Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Adv Nutr. 2019 Jan 1;10(suppl_1):S49-S66. doi: 10.1093/advances/nmy063. Erratum in: Adv Nutr. 2020 Jul 1;11(4):1054.

[57].                   Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019 Mar 9;8(3):92.

[58].                   van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.

[59].                   Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2019;359(6380):1151–6.

[60].                   Cisek AA, Dąbrowska I, Gregorczyk KP, Wyzewski Z. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol. 2017;74(3):277–83.

[61].                   Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev. 2023 Jan 11;123(1):31-72.

[62].                   Kumar B, Lorusso E, Fosso B, Pesole G. A comprehensive overview of microbiome data in the light of machine learning applications: categorization, accessibility, and future directions. Front Microbiol. 2024 Feb 13;15:1343572.

Related Images:



Recent Images



Gender Differences in Nutritional Status During Early Adolescence: A Comparative Study in Mohanpur Block, Paschim Medinipur, West Bengal
Association Between Junk Food Consumption Patterns and The Severity of Premenstrual Syndrome
Recent Progress on Acrylamide-Induced Programmed Cell Death (PCD) in Safety Drug Development
Bilayer Tablets in Controlled Drug Delivery: A Comprehensive Review of Modern Formulation Strategies
Sustainable Approaches to Heavy Metal Remediation in Aquatic Systems: Challenges and Innovations
Recent Advancement in Drug Development for Intranasal Drug Delivery System
Management and Treatment of SARS-CoV-induced thrombotic events
Development of HPTLC Fingerprint of Curcuma longa Collected from Different Geographical Locations of Chhattisgarh for Quantification of Curcumin
Understanding Gut Microbiota and Antibiotics Complex Interplay and Clinical Implications
Evaluation of Antibacterial Activity of Silver Nanoparticle Loaded Curcuma Extract Collected from Sarguja District of Chhattisgarh

Tags


Recomonded Articles:

Author(s): M. Kranti Kumar a; Khemkaran Ahirwar b; Sheetal Mishra c

DOI: 10.5281/zenodo.13767525         Access: Open Access Read More

Author(s): Laxmi Sinha a, Sanjay Kumar Jain b, Rachana Choudhary c

DOI: 10.5281/zenodo.13341940         Access: Open Access Read More

Author(s): Muhammad Manjurul Karim a; Shravan Paswan b; Monika Bhairam c; Sheetal Mishra d

DOI: 10.5281/zenodo.14635348         Access: Open Access Read More